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In this lab, the “interplanar spacing between scattering planes in a polycrystalline graphite lattice”
was measured[1]. By observing how electrons can obtain wavelike properties, known as the deBroglie
wavelength, one can better understand the characteristics of electron beams. Electrons of equal
energy are guided towards a graphite target in which the target has random alignment composing
of two main planes of scattering, d1 = 0.213 ± 0.005nm and d2 = 0.123 ± 0.005nm[2]. Because the
crystals’ planes inside the target have proper alignment, one can observe Bragg diffraction as the
beam from the “electron gun” bounces off the crystals. In order to discover the interplanar spacings
within the crystals, a fit of the “Bragg scattering angle (θ)” at different voltages is required [1].The
interplanar spacings were calculated to be d1 = 0.2508 ± 0.0012nm and d2 = 0.1464 ± 0.0004nm.

I. THEORY

In 1923, Louis de Broglie theorized that all matter
could have wavelike properties as well as particle prop-
erties. This wave-particle duality was understood with
respect to light, but as it turned out, after making vari-
ous discoveries, it was applicable to any form of matter.
He suggested that the wavelength of a particle was re-
lated to its momentum and is modeled in the following
manner[3]:

λ =
h

p
(1)

where lambda is the de Broglie wavelength, h is Planck’s
constant, and p is the momentum. Wavelike properties
of electrons are able to be observed through interference
patterns as the electrons scatter across successive planes
of atoms within the crystalline lattice structure. These
patterns and relationships are known as Bragg scattering.
For a single crystalline plane, this constructive interfer-
ence can be expressed in the following fashion[1]:

nλ = 2dsin(θ) (2)

where d refers to the distance between either diffraction,
and θ is the grazing angle measured with respect to the
Bragg planes. Therefore, the angle is measured from the
surface of the graphite as seen in FIG. 1 [1].

In the special case of a graphite polycrystalline lat-
tice, the atoms are not aligned as linearly as in Figure
1. Instead, they form hexagonal shapes that alter the
apparent Bragg planes. This modification is shown in
FIG. 2.

The reflected rays or beams of electrons extend out-
wards in a conical shape which then appears as a ring
of light when viewed with a contrasting screen. These
light rings are where the visual representation of the con-
structive interference from the Bragg diffraction can be
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FIG. 1. Bragg diffraction is observed when waves with the
same wavelength scatter off of adjacent planes of atoms as
shown between rays 1 and 3. Ray 1 and 2 have no path length
differences. The path length difference between the two rays
1 and 3 is equal to an integer multiple of the wavelength as
shown in Equation (2).[3]

FIG. 2. Shown is the structure of polycrystalline graphite
with different Bragg planes indicated by red and blue lines.
In this figure, s is the interatomic distance labeled as 0.142nm
[3]. In this figure, the lattice spacings are d1 = 0.123nm and
d2 = 0.213nm [2].

observed [3].
In this experiment an electron diffraction tube is used

to observe the scattering. Electrons are accelerated from
within the apparatus, towards a graphite target with a
potential difference. The kinetic energy of the electrons
as they hit the target is modeled by the following rela-
tionship [3]:

K =
p2

2me
= eVa (3)
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FIG. 3. The geometry of the diffraction tube. In this experi-
ment, L = 0.140± 0.003m to the outside of the glass and the
radius R = 66.0mm, and the thickness of the glass is 1.5 mm
[1].

where K is the kinetic energy and Va is the potential
difference. If the aforementioned deBroglie wavelength
equation (Equation 1) is applied to the equation above,
then one gets[1]:

λ =
hc√

2mec2eVa
(4)

Then, if all of the known values for h,c, me, and e are
plugged in, Equation 4 reduces down to [1]:

λ =
1.227√
Va

(5)

where the resulting value for λ is in nanometers.
For the second part of the procedure, when the objec-

tive is to determine the spacing between planes, some
more information must be added. The condition for
diffraction at small angles using the equation λ = dsin(θ)
becomes[3] :

θ =
D

2L
(6)

where D and L can be understood from Figure 3.
Then using equation (5), (6), small angle approxima-
tion on equation 2 (sin(θ) = θ), and the Bragg equation
(2dsin(θ) = λ), the following equation is derived [3]:

d
D

2L
=

1.227√
Va

(7)

D =
(1.227)(2L)

d

1√
Va

(8)

Then, when plotting D vs 1√
Va

, the slope value can be

used in tandem with Eqn. 8 to find the final values of d,
the spacing in between planes of the graphite lattice [3].

II. PROCEDURE

To begin this experiment, the lab was set up as shown
in FIG. 4. Next, starting with the voltage knob set at

Electron Diffraction Tube

Ammeter Power Supply Multimeter

Gigaohm Resistor

FIG. 4. Above, the Electron Diffraction Tube is connected
to the Power Supply and the Ammeter. The Ammeter is
wired to the Power Supply and the tube. The Power Supply
is connected to the tube, Ammeter, Multimeter, and High
Voltage Probe (Resistor). And the Multimeter is wired to
the High Voltage Probe (Resistor) and the Power Supply.

0± 2V , the voltage was slowly increased until two green
rings of different radii appeared. Once the green rings
appeared to be prominent, the voltage was recorded and
the diameter of both rings was measured using vernier
calipers. To verify the measurements were tangent to
the tube’s screen, the calipers were slightly “hovered
over” the rings, which is probably to have an affect on
the consistency of the measurements. To increase the
accuracy and precision of the measurements, the rings
were measured multiple times to help determine the
uncertainty in the diameter measurement which was
±0.5cm. By slowly increasing the voltage, the diameters
were recorded for 20 measurements. The uncertainty
in the voltage was determined to be ±2V , because the
voltmeter would bounce between two numbers within 2
volts.
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III. RESULTS AND ANALYSIS

Accelerating Voltage

(V)(± 2 V)
Small Diameter
Di

(cm) (±0.05cm)

Large Diameter
Do

(cm) (±0.05cm)

2312 3.111 5.260

2603 3.000 4.883

2924 2.750 4.664

3451 2.548 4.332

3626 2.568 4.224

3783 2.432 4.148

3943 2.410 4.032

4092 2.332 3.882

4205 2.344 3.902

4305 2.202 3.978

4439 2.342 3.876

4549 2.268 3.776

4672 2.246 3.764

4781 2.228 3.760

4870 2.200 3.700

4891 2.198 3.363

2385 2.954 5.118

2439 2.952 5.120

2636 2.952 4.774

3313 2.588 4.452

Table 1. From this table, one can observe that as the
voltage increases, both of the diameters decrease. With
this data, equation (8) is used to plot the diameter of
the rings (D) vs 1√

Va
. With this plot, two lines will be

fitted to the data to aid in the determination of the
longer and shorter lattice spacings.

With the data from Table 1, a plot of D vs 1√
Va

for

both Do (outside) and Di (inside) can be produced. The
reason for the plot being D vs 1√

Va
is because when using

equation (8), the slope should be (1.227)(2L)
d . By fitting

the data to equation (8) and using L = 0.140±0.003m[1],
two different d values should be able to be found which
represent the interplanar spacings of the “honecomb”
structure in Figure 5.

From FIG. 5, the line of best fit for the outer

ring was y = (1.227)2(0.140)
0.1464 (x) + 0.0032 where y is the Do

values, x is the 1√
Va

values, d2 = 0.1464±0.0004nm, and

the intercept was C = 0.0032±0.0001m. The line of best

fit for the inner ring was y = (1.227)2(0.140)
0.2508 (x) + 0.0023

where y is the Di values, x is the 1√
Va

values,

d1 = 0.2508 ± 0.0012nm, and the intercept was
C = 0.0023 ± 0.0001m. The uncertainties in the d and
C values were calculated through minimized χ2. In
a perfect lab, the lines of best fit would be expected
to intersect with the origin, but because this is not

FIG. 5. The graph above shows two lines of best fit with the
data from Table 1. The yellow line represents the larger/outer
ring and the blue line represents the smaller/inner ring. By
plotting the diameter of the rings versus 1√

Va
, d for the inner

and outer ring was able to be determined. The interplanar
spacings were found to be d1 = 0.2508 ± 0.0012nm and d2 =
0.1464±0.0004nm where d1 represents the outer ring’s spacing
and d2 represents the inner ring’s spacing.

a perfect lab, the intercepts were a tab bit off from
intersecting with the origin. This was most likely due
to systematic error which will be further explained
in the Error Analysis. For the inner ring’s fit, the
χ2 = 17.8009 which is pretty good with 20 sets of data
and 2 constraints, and the χ2

red = 0.9889 which is very
good because this value is very close to 1. For the
outer ring’s fit, the χ2 = 20.1590 which is also pretty
good with 20 sets of data and 2 constraints, and the
χ2
red = 1.1199 which is very good because this value is

very close to 1. This data analysis will go in further
detail in the Error Analysis.

As a sample calculation using the inner ring’s line
of best fit:

y =
(1.227)2(0.140)

(0.2508)
(

1√
4092

) + 0.0023 = 0.0237m (9)

The final results for the latttice spacings were that the
outer ring was formed from a spacing of d2 = 0.1464 ±
0.0004nm and the inner ring was formed from a spac-
ing of d1 = 0.2508 ± 0.0012nm. From this data, one
can conclude that a smaller distance from plane to plane
results in a larger ring of photons. Comparing these val-
ues to the actual values of d2 = 0.123 ± 0.005nm and
d1 = 0.213 ± 0.005nm, the calculated values were accu-
rate out to the tenths place, but the percent difference
was about 17 − 19%. For the uncertainties in all of the
values, a minimized χ2 was used for each given value in
the fit.
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FIG. 6. The probability χ2 for 18 degrees of freedom for the
lines of best fit in FIG. 5 are shown above. The calculated
χ2 for the inner ring’s fit was 17.8 and for the outer ring’s fit
it was 20.2. These values are pretty good because there were
20 sets of data and 2 constraints. Because the χ2’s are well
within the 90% confidence range, one can say that the fits to
the data are good.

IV. ERROR ANALYSIS

For this lab, the main sources of error were systematic
and random error. On the systematic error, it is difficult
to increase the precision and accuracy in reading the
caliper and multimeter, so this uncertainty is considered
in these values as explained in the procedure. As for
random error, because the rings were not well defined
and it was expected to measure at a tangent plane
to the tube’s screen, it was more difficult to maintain
precise measurements. This aspect from the data pooled
the largest amount of uncertainty when it came to
measuring the diameter, thus “overshadowing” the
uncertainty in the systematic aspect of measuring with
the calipers. This is also most likely the cause of the
non-zero intercepts in FIG. 5 as well. To better improve
this lab, consider including a transparent, thin plane,
like laminate, to verify the measurements are conducted
on a tangent plane and not around the curved surface of
the tube.

V. CONCLUSION

The results from this lab are that the interplanar
spacings between scattering planes in a polycrystalline
graphite lattice are d1 = 0.2508 ± 0.0012nm and d2 =
0.1464 ± 0.004nm, where d1 represents the spacings for
the inner ring and d2 represents the spacings for the
outer ring. Comparing our values with the accepted

FIG. 7. The reduced χ2 probability for 18 degrees of freedom
for data shown in FIG. 5 is shown above. The calculated
χ2
red for the inner ring’s fit was 0.9889 and for the outer fit

it was 1.1199. Because this is a reduced χ2, values around 1
characterize a good fit. Since these values are very close to 1,
the fit equations are very good and the χ2

red are within the
90% confidence range.

and expected values of d1 = 0.213 ± 0.0005nm and
d2 = 0.123 ± 0.0005nm, the calculated values are close
to the accepted value but differs by 17 − 19% for the
inner an outer spacings respectively. The interplanar
spacings were able to be calculated by measuring the
diameter of the rings at different voltages and plotting
and fitting the data to equation (8). This helps illus-
trate the physics behind electron diffraction, because as
the beam of electrons is ejected and accelerated through
the graphite target, the electrons act like a wavelength
in that they bounce off of different angled crystals which
are then projected onto the tube’s screen as 2 distinct
rings. Through the use of equation (8), it was able to
be proven that the electrons have wavelike properties.
Both the χ2 and χ2

red were very good, which means that
equation (8) is an accurate representation of the Elec-
tron Diffraction Data. As a small addition to this lab,
a transparent plane as described in the Error Analysis,
may improve the precision and accuracy of the diameter
measurements.
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